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An algorithm is proposed for the construction and investigation of orbital sta - 
bility of Liapunov motions close to the equilibrium position of autonomous 
Hamiltonian systems with many degrees of freedom. 

1. Let us consider the autonomous system of Hamilton’s differential equationswith 
N + 1 degrees of freedom. We select the generalized coordinates and moments so 

that the origin of phase space coordinates is the equilibrium position, and represent the 
Hamiltonian, which is analytic in the neighborhood of the equilibrium position, in the 
form of series 

H = H,f . . .+ H,+. . . (1.1) 

where H, is a homogeneous polynomial of power m in coordinates and momenta 
whose coefficients depend on the problem parameters. 

First, we consider the system with Hamiltonian H, , representing the determining 
equation in the form 

D (0) = 1 ajk - 06jk 1 = 0 0.2) 

where 6jk (i, k = 0, 1, . . . N) is the Kronecker delta and ajk are coefficients 
of the linear system of differential equations. 

If Eq. (1.2 ) has a pair of pure imaginary roots of the form Ql) = & ih, and 
among its other roots there are none equal to 00 , then the coordinates and momenta 

Qo7 41, PO7 and pi (j =1, . . . , N) can be chosen so that function H, is of the form 

H, = ‘1s ho (qo2 + po’) + HP 
(1.3) 

where H2cN) is a function that depends only on the variables Qj and pj. It can be 
checked that the differential equations which correspond to the Hamiltonian (1.3 ) have 
the particular solution 

q. = a0 sin (hot + Bo), Po=ao coa (hot+Bo) (1.4) 

91 = PI = 0 (j=f,...,N) 

where a0 and PO are arbitrary constants that depend on initial conditions, Solution 
(1.4) is periodic of period To = 2d 1 ho I. 

If Eq. (1.2) has no other roots of the form f in& ( no is an integer ) , then 
according to Liapunov’s theorem on the holomorphic integral [l ] , a periodic motion of 
period close to To exists in the nonlinear system of differential equations with the 
Hamiltonian H . The periodic motions constitute a set whose parameter is called 
the amplitude (or the orbital parameter) of periodic motion e and depends in initial 
conditions. Liapunov had also proposed a procedure for constructing periodic motions 

51 



52 A , P. Mackeev and A. G. Sokol’skii 

in the form of series in powers of the orbital parameter e. Since then this problem 
was extensively developed, and at present many methods of constmcting periodic mo- 
tions are available. A method of constructing periodic motions based on canonical 
transformations is also proposed here, although the main aim is to develop an algorithm 
for solving the problem of periodic motion stability in the strictly nonlinear meaning. 

The derived method of periodic motion co&uction is adapted to the solution of this 

basic problem. This paper is a continuation and natural generalization of the earlier 
inv~tigation by the authors (*) . 

2. Periodic motions are Liapunov unstable relative to perturbations of coordinates 
and momenta 40 and p. , since their period depends on initial conditions. The pco- 
blem of periodic motion orbital stability is, however, interesting. 

In that method the value of constant energy is not fixed, and it can be varied in a 

certain range, Hence no reduction is made to the number of degrees of freedom, as used 
in the isoenergetic reduction. This makes it possible to investigate the complete neigh- 

borhood of periodic motion using canonical transformations, and in the periodic motion 
neighborhood it is possible to introduce such local coordinates that the Hamiltonian of 
perturbed motion is of a form similar to the normal form in the neighborhood of the 
equi~brium position. In this way the orbital stability problem of periodic motion ce - 
duces to that of Liapunov stability relative to local coordinates. 

In the considered problem the constructive application of the local method may be 

schematically outlined as the sequence of the following operations: 

1) determination of the investigated periodic motion in ” action -angle”vaciables ; 

z ) introduction of local coordinates in the periodic motion neighborhood, and the 
determi~~on of the perturbed motion ~miltonian ; 

3 ) passing to the new “angle” variable, linear normalization, and obtaining state- 
ments about stability in linear approximation ; 

4) reverting to the old independent variable and effecting the nonlinear nocmal- 

ization of the ~miltonian ; 

5 ) using the properties of coefficients of the Hamiltonian normal form to determine 
the orbital stability of the periodic motion. 

3, When among the roots of the determining equation (1.2 ) there is at least one 
pair of roots with nonzeco real part, the considered periodic motion is unstable. In what 
follows we assume that all roots of Eq, (1.2) ace pure imaginary and that there are 
among them no equal or zero roofs. It can be then considered that the quadratic part of 

the Hamiltonian (1.1) is of the form 

H2 = + hO (402 + A2) + f 2 hj (qj” + pj”) 
j=l 

where f hj 1 are frequencies of the linear system with the Hamiltahian. 

(3.1) 

*) Mackeev, A, P, and Sokol’skii, A. G., Investigation of periodic motions close to 

Lagrange solutions of the limited three-body problem. 
Preprint No. 110, Inst. Pcikl. Matem. Akad. Nauk SSSR, 1975. 
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The form of H, in(1.1) is 

Hm = i?/ hwov,rz. . . ~NrNqO~~pO~~ql~~ulr~. . . ,&fpiN 
“of. . . +rN=m 1 (3.2) 

For the construction of periodic motions of the nonlinear problem we use the me- 
thod of canonical transformations , and represent forms (3.2) as 

(3.3) 

where Ha, P denotes the totality of term of power cz of variables 4s and ps 
and of power g of remaining variables. We now carry out the nonlinear canonical 

transformation 

Qi7 Pi + !li*YPi * (i = 0,1,. . . , N), (H+ H*, H2 = H,“) (3.4) 

which in all forms (3.3 ) of the new Hamiltonian 
Hz_,, 1. 

H* would normalize terms H,*,, o 
and cancel terms Such transformation is convergent [3 ,4]. 

Transformation (3.4) can, for instance, be obtained using the classic Birkhoff’s 

method [5]. However that method has a number of disadvantages that are particularly 
evident in the normalization of the Hamiltonian of systems with many degrees of free- 
dom of considerable order relative to coordinates and momenta. Because of this trans- 

formation (3.4) and all subsequent normalizing transformations are better effected by 
the recently developed method of Hori -Deprit which is based on canonical transfor - 
mations of Lie [6,7 1. It should be noted in this connection that an essential part of 
the proposed method of periodic motion analysis is the use of the described algorithms 

on a computer. The basic part of the necessary programs of normalization computation 
was published by the authors earlier (*) . 

We represent the generating function of transformation (3.4 ) which depends only 
on new (or only on old ) variables in the form of series 

T = T3f. . .+ T,+. . . 

The operator equation for the determination of coefficients of the generating func- 
tion and of the new Hamiltonian is of the form 

DOT, = H,’ - Ii,* (m = 3,4, . . . ) (3.5 1 

where operator D o is defined as follows : 

Here and in what follows braces denote the operation of computation of POiSSOn’S braces. 
The forms of H,’ in (3.5) are defined in terms of “lower” functions 

Ha, Hp*, Tp (a = 2, . . ., m; fJ = 3, . . ., m - 1) (3.6) 

l ) Markeev, A. P. and Sokol’skii, A. G. , Certain computational algorithms for normalizing 
Hamiltonian systems. Preprint No. 31, Inst. Prikl. Matem. Akad. Nauk SSSR, 1976. 
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using Poisson’s braces {F,; Tp} = D#‘,,, where functions F, are expressed in 
turn in terms of functions (3.6 ) using similar Poisson’s braces. For example, 

H,’ = H,, H,’ = Ha + ‘12 03 (Ha + Ha*) (3.7) 

H,’ = H, + V2 03 [H4 + H4* + llsDa (Hs - Hs*)l + 
V2D4 (Hz + H,*) 

If in the course of solving a specific problem it is necessary to consider in the 
Hamiltonian H terms H, of order higher than the fifth, then H,’ (m > 6) 
may be calculated by the formulas proposed by the authors (see footnote on p. 53 >. 

Equation (3.5) decomposes into groups that correspond to terms Ha,p in formula 

(3.3 ). Hence such terms may be normalized independently of each other. Denomin- 
ators of the form 

d a. P = I hO I CyO - PO) + jg I hj I tyj - Pj) 
(3.3 ) 

appear in the normalization of terms Ha,3 in the form (3.2). 
Assume that the Liapunov condition of existence of periodic motions of period 

2nlI hOI is satisfied, i. e. that the problem parameters are such that for all in- 

tegral no the inequalities 

hj # n&o (j = 2, N) (3,9) 

are satisfied. 
Then taking into account (3.9) and that parameters hr (i = 0,1, . . . , N) are 

nonzero, we find that in all forms of HE in the new Hamiltonian terms of form 

K& can be completely cancelled, since denominators &,P which correspond to 

these terms do not vanish. This also implies that in forms of odd power (i. e. in Hlm_r) 

the terms H&,-l,o can be cancelled. 
In forms of even powers these terms can be normalized and represented in the form 

H& o = b,,2-” (4;’ + p,*“)” (3.19 ) 

where b,, (2m = 4, 6, . . .) depend only on parameters of the problem. 
When Eqs. (3.5 ) have been solved for all m and the related terms of expansion 

of the generating function determined, the obtained transformation (3.4) is of the form 

Qi = 4i* + 
O” 1 c kl D’(qi*, 

k=l 

(P,z~,*+t+D~p,* (i=O,t,...,N) (30~1) 

k-1 

D = 5 D,, D”f=f, D’fsDf ={f;T},..., 
m=3 

Dk+‘f = D (Dkf), . . . 
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where D is the differential Lie operator and f is an arbitrary function of variables 

4i * and pi* (or 4i and pi ). 
Let transformation (3.4) have been carried out. Then, retaining previous notation 

(without asterisks) for the coordinates, momenta and the Hamiltonian, we find that in 

the new Hamiltonian H the totality of variables 41 and pj (j = 1, . . . , N) is 

of a power not lower than the second. This means that the equations of motion admit 
parti’cular solutions that correspond to Liapunov’s periodic motions for which Qi = 
pi = 0 and the variation of qO and p,, is defined by the equations 

aH dqo 
dt - ape = [A, + ban (402 + P:)“-‘1 P,, 

WI=2 

“PO- 
dt - -?$- -[h,+ ~m2’-mb,,(q~z+p,2)“‘-1jq~ 

rn=z 

(3.12) 

In variables action 1 -angle W, related to 40 and po by the indicated be- 
low formulas Eqs. (3.12), are of the form 

m 

dl o dW 
dt=’ dt -=~o+ 

c 
mbsm P-l 

m=2 

qO = r/Z sin W, p. = J/-B cos W 

The solution of these equations is 

I = IO = con&, W = Qo (10) @ - to) + Wo 

(3.13) 

(3.14) 
a7 

fro = ho + c mb2mI~-1, To = -%.- 
VI=2 I Qo I 

where Q,, is the frequency and To the period of periodic motion. 

It will be seen that when I, -+ 0 the motion period tends to 2 n / 1 I.,, I. 

4. Let us investigate the stability of periodic motion (3.14 ) relative to pertur - 
bations of periodic motion frequency (or what is the same, relative to the perturbation 
of action variable I, of unperturbed periodic motion ) and to perturbations of 

Qj and pi,(j=l,. . . . Jv). Let E = 1/p, be a small but finite quantity 

(only small periodic motions are considered ). Let 1 be the variable of the perturbed 

motion action related to I,, bv the formula 
” , 

I = 1/2f32 + r. (4.1) 

where r. is the perturbation of the variable action. The sign of quantity r. is ar- 
bitrary, and qj and pj are quantities of the first and ro of the second order of 

smallness, and in their meaning all these quantities, unlike e, are infinitely Small. 
Using (4.1) we define the Cartesian coordinates q. and po of perturbed motion 

in terms of r. and E as follows: 

qo=1/2?sinW, p,=JfScosW (4.2) 
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l/s = E I$ $- + E (-lp;;;:,,i! @)‘““} = 1 
m=1 

e++-g + 0 (ro3) 

Frequency of the considered periodic motion (3.14) in terms of e is of the form 

Q. = 5 QT)am = h, + Coo&2 + 0 (9) (4.3) 
m=o 

&-Q’ -_ ho, &s”-1’ = 0 ? fir”’ = cm + 1) 2-” hw2 

where coo denote the quantity b, from (3.10 ). 
Substituting into the Hamiltonian the quantities (4.2) and collecting terms of like 

order relative to ql, pj and I/r for the Hamiltonian of perturbed motion we 

obtain 
K = Kz + K, + K, + . . . (4.4) 

Kz = S&r0 + f ~~j(q;+Pf)+ EH;,z, K3 = 2 Hit,, 
j=l m=1 m=o 

K, = BooFo2 + [$ &i,+o + 2 Hi‘,, 

m=1 m=o 

gw2 = 
( 

uoazj+p,&o)Hm,2 

Boo s coo + 2 Bgm’ e2m, Bg”” = (m + 1) (m + 2) 2++‘) b,,, 
m=l 

where the superscript ,A indicates that the expressions E sin W and E cos w 

are to be substituted for 40 and p. in the corresponding forms, 
Hamiltonian (4.4) is of the period 2n relative to the variable W. Dots in 

(4.4) denote terms whose order of smallness relative to perturbations is not lower than 
the sixth. The Hamiltonian of perturbed motion depends first of all on the problem in- 
put parameters U and, secondly on parameter E which defines the periodic mo- 

tion amplitude (3.14). Note that in the problem of stability the dependence on the 

initial instant of time to is unimportant. 
The investigation of stability in a specific mechanical system shows that in the 

normalization process the values of parameters U for which resonance of the first 

( Liapunov’s condition of periodic motion existence), second (generating point of para- 
metric resonance regions), of the third and fourth orders (generating points for the re- 
lated resonance surfaces ) are possible. The general form of such resonance representation 

is 

5 n&j = n0h0 
j=l 

(jam I nj I = n) (4.5 ) 

. 
where n is the order of resonance and no is an arbitrary integer. 

When deciding which of resonances are to be taken into account for a complete 
investigation of stability in multidimensional Hamiltonian systems in the case of a 
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specific problem the following two remarks must be taken into consideration: 
a ) the dependence of the frequency of a system linearized in the equilibrium po- 

sition neighborhood on parameters U is known, hence in that region of parameter 

variation the latter are subjected to certain constraints and, consequently, from among 
all resonances (4.5 ) only those that are theoretically possible are to be selected ; 

b ) the structure of the Hamiltonian is often such that some of the theoretically 

possible resonance do not appear in the course of normalization (i. e. theydonot result 
in the appearance of zero denominators in the generating function), which makes their 

consideration pointless. 
These two remarks considerably lighten the investigation of cases resonance in a 

specific problem. 

5, Let us investigate the stability of a linear system with Hamiltonian K, ( see 
(4.4) ). 

First of all note that the values of parameters U which satisfy relationships 

(4.5), where n=2 and n, is an arbitrary nonzero integer, are generating para - 
meters for the instability region (region of parametric resonance ) in the space of para- 
meters U and E. Without loss of generality such resonances can be represented 

in the form 

n&r + n,h, = n,h, (nl >,O) (5.1) 

where nl + 1 n2 1 = 2. For nl = n2 = 1 resonances (5.1) are called para- 
metric resonances of the combinative type, while for n, = 2 and n2 = 0 ( or 

n, = 0 and n2 = 2 ) they are of the basic type. Resonances (5.1) for which 

n,n, ( 0 do not generate instability regions [8 1. We shall, therefore, assume that 
the numbers nl and n2 are positive. 

We shall describe the procedure of normalization of the quadratic part of the per- 
turbed motion Hamiltonian, and represent function K, as 

(5.2) 
cc 

G2 = 
c 

Gm,2~m, Go,2 = $ 
N ?b. 

c rn=0 
2 (qj” + Pi”) 

j=l 
m 

G m.2 = +m,2-+ 
ii 0 c 

Gm_k,2@,k), F,,, = H;,2E-m (m=la 2,...) 

h=l 

Functions G,,, (and also F,, 2 ) are of zero order relative to e, are %c-periodic 
functions of w , and are expressed by finite series of sines and cosines of integral 

multiplicities of W, and their maximum multiplicity does not exceed m. 

To reduce function (5.2) to the normal form it is necessary first to normalize it 
with respect to variables qi and pj (i = 1, . . . , iv). For this we pass to the new 

independent variable w. Then the Hamiltonian that defines the variation of variables 

qj and pj is represented by function G, which corresponds to the nonautonomous 

canonical system with N degrees of freedom. 
Normalization of the Hamiltonian G, can be carried out by conventional me- 

thods e for example, using an algorithm similar to those of Birkhoff or Deprit -Hori . 
At each step of G m,a normalization it is necessary to solve systems of linear differ- 
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ential equations with periodic coefficients. However in the considered case these equ- 
ations have a small parameter & and the”time” w in the right-hand sides of dif- 
ferential equations appears in a special form. Hence the normalization of the nonauto- 

nomous canonical system with Hamiltonian G, can be reduced to the normalization 

of an autonomous system (but with IV + 1 degreesof freedom ), i. e. to the solution 

of a system of algebraic equations. 
First of all note that for normalizing function G2 we use the operator equation 

(3.5 ) in the form 
BJ,,,., = G& - GE,, (5.3) 

Ao = DO - &, DOT,, 2 = - {Go,z; T,nv 2) 

where T,,,,a and Gz,, are terms of power m of the expansion of the generating 
function of the sought transformation T, and of the new Hamiltonian G,* in series 

in the small parameter. Functions GA, a are calculated by formulas similar to (3. ‘7 ). 

The process of solving Eqs. (5.3 ) can be, however, represented in a somewhat different 

form . 
We introduce imaginary variables 4”~ and pw defined by formulas 

qw = 8 sin W, pw = E co9 w (5.4) 

After this substitution the time W does not explicitly appear in the Hamiltonian G,, 
since e and W appear in function K, in (4.3 ) only in the form of combin - 
ations (5.4 ) and a2 in frequency (4.3 ) can be replaced by the expression ‘7w2 + 
Pw”. The obtained Hamiltonian is of the form 

where the superscript ” indicates that in functions marked by it E and W are el- 
iminated by the substitution (5.4 ) ; in (5.6 ) m > 3 and function L, is determined 
below. Note that the effect of operators with superscripts ” and ^ in Sect. 4 is 
opposite, hence function G7;, 2 can be directly obtained from functions H,,, in the 
second of formulas (4.5 ). For this it is only necessary to carry out in functions II,,, 
the formal substitution QO --f Qw and p. + pw and use the last three of formulas 

(5.2). 
Using the rule of composite function differentiation the operator A0 can be pre- 

sented in the form 

Ao = Do- 
[ 

a a 
pwaqw --Qwap, 1 

and the operation equation (5.3 ) then becomes 

AoS,p2, 2 = L,’ - L,,,* 

Ao&-2,2 = - {k &n-2,2) 
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Functions J%’ are calculated by the lowest functions using formulas (3.7 ) where op - 

erators D, are to be replaced by operators Dm-2,-zl whose action on an arbitrary 

function of variables qw, pw, 41, and pj (j = 1, . . . . N) is defined by the re- 

lationships 

- D,_,,,F = {F; S,_,,,} = e[&+++] (5.7) 

j=l 3 3 3 i 

It is thus possible to normalize instead of the nonautonomous system with 
Hamiltonian Gt the autonomous system (but,with the numbei of degrees of freedom 

increased by one) with Hamiltonian (5.5). It is assumed that in this case the normal- 

ization procedure differs from that of normalization of an autonomous system with 

N f 1 degrees of freedom onIy by that in calculating Polssons braces in the quantities of 
(3.7) and in deriving the explicit form of (3.11) differentiation is carried not with 

respect to all variables Qw, pw, Qj, and pj (j = 1, . . . , N) but, in accor- 
dance with (5. ‘I), only with respect to variables qj and pj. 

Since variables qj and pj pp a ear in Hamiltonian (5.5 ) in quadratic form ( in 

(5.6) ( VI + /AI + . . . + yN + p,,, = 2 ) ), only resonances of the form (4.5) 

with n=2 can impede normalization. 
In the absence of any such resonances Hamiltonian (5.5) can be reduced to the 

following normal form : 

L’=rw+t[z+ &z2m,jr;} rj 
j=l VI=1 

(5.8) 

Function (5.8 ) is presented in “polar” coordinates rw, .cpw, rj, and Cpj related 

to the new variables qw*, pw*, qj*, and pj* by formulas of the indicated form. 

Parameter a,,,f depends on parameters U of the problem. 
If the resonance relationship (5.1) is satisfied, the normal form of Hamiltonian 

(5.5) is 

u -Sin (wh + w72 - nocPw) + 0 (r&> 

where parameter a also depends on parameters U and brackets indicate the taking 
of the integral part of a number. 

When e ( i. e. qw and pw ) are fairly small the transformation 
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qw, PW, qj, ~j-+ a& P& qj*, Pj* (i ~1, . . t NJ 

for and . is out formulas to in 
again Dm_2,2 from (5.7 ) are to be substituted for operators D,, , The 

form of these operators clearly shows, as expected, that the imaginary variables qw 

and pw are not affected by such normalization. 

Now let us carry out the transformation inverse of (5.4) and revert to the old inde- 
pendent variable t. If, in add’ti 1 on, we specify the transformation r0, w-t To*, 

W* by formulas 

To = ro* + dS, / dW, W = W* (5.10) 

then together with (5.9) we obtain the canonical transformation which normalizes func- 
tion (5.2 ) with respect to all variables. In the nonresonance case the normal form of 

that function is (previous notation is retained for r. ) 

K2” = fioro + 5 QjFj 

and in the resonance case it is 

N 

(5.11) 

now) + (5.12 ) 

The following notation is used in these formulas: 

Let us consider the case of parametric resonance. Regions of parametric resonance 

(instability regions) issue for small E from surfaces for which in the region of variation 

of the problem parameters U relationship (5.1) is satisfied. According to [8 ] on the 

surfaces which bound these regions in space of parameters U and E the following 

relationships are valid : 

1 n, (hoQ1 - h,S2,) + rl2 (A&2, - Wo) 1 = I koA I vqqJno (5.13) 

When the right-hand side of the last relationship is greater than the left-hand, the 
periodic motion is unstable, and when it is smaller, we have stability in the first app- 
roximation . 

Equations (5.13 ) of two surfaces in the space of parameters U and E may be 

sought in the form of series in E, using series expansions of Q2,, Q1, 612. 

6. If parameters U and e of the problem are such that the considered periodic 
motion is stable in linear approximation, then by normalizing the linear system using 

the method described in Section 5, Hamiltonian (4.4) can be reduced to the form 
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K* = K2*+K3* 

K3*= 2 K,,, 
Tll=O 

+ K,* + . . . (6.1) 

r 

&* = &l.o"+&~ Ki,a]c, + zK;,r 

m=1 Tlk=lJ 

where Ks* is of the form (5.11) and functions K^,,~ (m=O, 1, . . .; i = 2, 3, 3 
are of order m relative to e (i. e. relative to the imaginary variables pw and pw 
in Sect. 5 ) and of order i relative to r& and p j (j = 1, . . . ., N). These func - 

tions are readily calculated by formulassimilar to (3.7 ) . For instance, 

li’ll,s = %,s, Kr,s = Hl,s + &,2H0,3 (6.2) 

K 2,3 = H2,3 + &2%,3 + ~2,2f~0,3r K1,2 = &,a 
- - 

K2r2 = H2,2 + 42Hlr2, &,a = Ho,o + 

61 

fH 
[ 

a 
172 QW~w-Pwaqw A- Sl,2 

1 

Elucidation of the question of stability in the strict (nonlinear) meaning, requires 
extension of the normalization process of the Hamiltonian of perturbed motion. 

Normalization of Hamiltonian (6.1) can be impeded by resonances 

jilnGj = nOQO (jil 1 nj 1 = n = 3,4) (6.3) 

In the region of variation of parameters U and e formulas (6.3 ) are equations 
of resonance surfaces of the third and fourth order and are derived similarly to the 
boundaries of parametric resonance regions in Sect. 5. Parameters U that satisfy re- 
lationships (4.5 ) are generating parameters for such surfaces. 

Let us, first, consider the values of parameters U and e which are not as- 
sociated with third and fourth order resonance surfaces. In that case form KS* in 
Hamiltonian (6.1) can be completely eliminated by using the method described in Sect. 
5, Normalization of fourth order terms consists of the following three independent stages. 

a ) Normalization of terms proportional to r. 2. These terms are already normalized. 

b) Normalization of terms proportional to ro. It can be skown_thht the normal - 
ization of these terms reduces to the averaging of function Kl,2-!-Ks,2+..- with res- 
pect to rapid phases of motion determined by Hamiltonian (5.11) . Note that for n = 2 

resonances (6.2 ) do not impede the normalization of these terms, since they appear 
only at the boundaries of parametric resonance regions and, consequently have been al- 
ready taken into account in linear normalizarion . 

c ) Normalization of terms independent of ‘70. This normalization stage is similar 
to linear normalization procedure. 

As the result, Hamiltonian (6.1) of perturbed motion can in the nonresonance case 
be reduced to the following normal form (previous notation is used for variables 1: 
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K = K, + K, + K* 

Kz ht 71 ,.,-,r~)= 5 Qiriy KP(rD,rl,...,r~)= 2 Bijrirj 
i=O lk+gj<N 

Mere the expansion of coefficients of form K, in series in E is similar to 

(6,4) 

that of 
Boo in (4.4), and K* is a 2n -periodic function of angle variables w , ql, 
. .,(PN ; order relative ri is less than 

In the of the order resonance normal form 

and In of the order resonance is 

K Kz $- -t A@otF/r~‘... ~~~N’sin(n,~,+...+nr~~~,~-~oW)fK* (6* 

The order function K* to E in(6.5)and(6.6)isnotlower than 

no 1 t and quantities Bij (6.6 ) detested with accuracy, 

Thus for the stability a periodic it is necessary to 
the coefficients one of normal forms ) - ) and the stab- 

criteria from 9 -141, results may obtained in manner 
for with two of freedom = 1) 

If third fourth order (6.3 ) in a Hamiltonian 
system in the of numbers . . , rz~ least one of sign 
place, the mot@ is stable C9 i. e. is stable any approximation. 

third order (6.3) is and in A 0, the 
motion is [lo, 11-j. A = the question stability is resolved by 

of that 
If fourth resonance (6.3 is present, in the form (6.6 

the periodic is unstable Xl]. With opposite sign this inequality 
the case two-frequency Hamiltonian we have El2 ] and in multi- 
dimensional stability is in the (fourth) approximation [ll] . 

In the nonresonance case of systems with two degress of freedom the question of 
stability is resolved by the Arnold-Moser theorem, viz. if (in notation of (6.4) and 
(4.4)) 

D#:o (7.2) 

D = K, (Q2,, -Qo, 0, . . ., 0) = coN - c&,h~+c&,* + 0 (e”) (7,31 

the periodic motion is stable [4,13 1, 
The state of development of the theory of Hamiltonian systems does not provide 

means for obtaining a similarly complete result in the multidimensional case. It is only 
possible to make the following statement. 

If for r0 = r, = , ,. = rN = o the determinants 
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D4 = dot 
ar,arja’i 

a& 
zj- O 

63 

(7.4) 

do not simultaneously vanish, stability is present for the majority (in the meaning of 
the Lebesgue measure) of initial conditions [13]. 

ft is also possible to consider the problem of formal stability of periodic motions, 
In the considered case the sufficient condition of formal stability reduces (see [14] and 
the footnote on p. 52 ) to the check of incompatibility of the system of equations 
(relative to r,, r,, . . . , rN) 

Ks=O, K4=0 (7.5) 

intheregion s-330, -.., rN Z 0 (note that by definition (4.1) the sign of para- 
meter r. is arbitrary ). 

In determinants (7.4) and Eqs, (7.5 ) it is evidently, reasonable to take into ac - 
count only the principal terms of expansions of Qr, and Bij in (6,4) (see also(7.3)). 
This means that for solving the question of stability in the nonresonance case, it is possible 
as a rule, to restrict the analysis to and including terms H, of the input Hamiltonian (1.1). 
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